

Chemical structure in NGC 3603

Markus Röllig, Zoltán Makai University of Cologne, Germany

<u>Outline</u>

- Basic information about the source
- Observations, data analyzes
 - HIFI
 - PACS
- Results (few examples)
- Summary
- Future works

NGC 3603

- Location: in Carina spiral arm in the southern hemisphere
- Coordinates (ep. 2000): $\alpha = 11^{h} 15^{m} 9.1^{s}$; $\delta = -61^{\circ} 16' 17''$
- *Distance:* ~7 8 kpc
- Luminosity: $L_{bol} > 10^7 L_{Sun} \rightarrow 100$ times more luminous than Orion Nebula
- *UV-field:* X~10⁶ Draine
- Central cluster: massive ($M_{total} > 4000 M_{sun}$) and young (~2.5 x 10⁶ y) cluster with dozen O-type stars
- Two clumps:
 - MM1 \rightarrow M_{vir} < 0.7 x 10³ M_{Sun}; <N(H₂)> > 10²³ cm⁻²
 - MM2 \rightarrow M_{vir} = 1.5 x 10³ M_{Sun}; <N(H₂)> = 0.4 x 10²³ cm⁻²

Our target source

Three cuts: C1: 3 positions toward MM1 C2: 7 positions toward MM2 C3: 9 positions toward MM2

Observation plan

Observed molecules in NGC 3603 I. (HIFI)

							÷.,
Obs. type	Obsid	Molecule	Transition	Frequency [GHz]	Beam ["]	∆v [km/s]	N
OTF map	1342201692	СН	$N_{J} = 1_{3/2} - 1_{1/2}, F = 2 - 1$	536.761			
				536.782			Š.
				536.796		0.7	
		C ₂ H	$N_{J} = 6_{13/2} - 5_{11/2}, F = 6 - 5$	523.972	43.5		4
			$N_{j} = 6_{11/2} - 5_{9/2}, F = 5 - 4$	524.034			걸
		HCO⁺	J = 6 - 5	538.689			
		CS	J = 11 - 10	535.062			
Cuts	1342201675	0–H ₂ O	$1_{10} - 1_{01}$	556.936		0.7	
		NH ₃	$1_{_{00}} - 0_{_{00}}$	572.498	27 7		
	1342201676	0-H ₂ O	$1_{10} - 1_{01}$	556.936	31.1		
		NH ₃	$1_{_{00}} - 0_{_{00}}$	572.498			
	1342201750	¹² CO	1-0 0	1036.912	22.5	2.91	
	1342201752	¹² CO	J – 9 – 0				
	1342201809	¹³ CO	1 - 10 0	1101 250	20.8	0.7	
	1342201810	¹³ CO	J – 10 – 9	1101.350			
	1342201818	¹² C ⁺	$^{2}P - ^{2}P$	1900.537	12.2		
	1342201819	¹² C ⁺	$F_{3/2} - F_{1/2}$				

Obs. type	Obsid	Molecules	Transition	Frequency [GHz]	Beam ["]	∆v [km/s]
	1342223427	NH	N = 1 – 0, J = 2 – 1	974.450	22.5	0.7
		H ₂ O	$2_{_{02}} - 1_{_{11}}$	987.927		
		C ¹⁸ O	J = 8 – 7	987.560		
	1342223428	NH	N = 1 - 0, J = 2 - 1	974.450		
		OH⁺	J = 1 – 0, F = 5/2 – 3/2	971.800		
	1342223429	NH	N = 1 - 0, J = 2 - 1	974.450		
		H ₂ O	$2_{_{02}} - 1_{_{11}}$	987.927		
Point		C ¹⁸ O	J = 8 – 7	987.560		
	1342223430	NH	N = 1 - 0, J = 2 - 1	974.450		
		H ₂ O	$2_{_{02}} - 1_{_{11}}$	987.927		
		C ¹⁸ O	J = 8 – 7	987.560		
	1342225899	NH	N = 1 - 0, J = 2 - 1	974.450		
		OH⁺	J = 1 – 0, F = 5/2 – 3/2	971.800		
	1342225900	NH	N = 1 – 0, J = 2 – 1	974.450		
		OH⁺	J = 1 – 0, F = 5/2 – 3/2	971.800		

Integrated intensity maps (HIFI)

Velocity (km/s)

Investigation of the spectra along the cuts II. (HIFI)

Markus

Normalized integrated line intensities

Markus Röllig

WADI – meeting, Bonn

17–19 October, 2012 11

Chemistry (HIFI)

Observed species I. (PACS)

Obs. type	Obsid.	Side	Molecules	Transition	λ [micron]
Line spectr.	10,4001,4004	Blue	[NIII]	${}^{2}P_{_{3/2}}-{}^{2}P_{_{1/2}}$	57.343
	1342214681		[OI]	${}^{3}P_{1} - {}^{3}P_{2}$	63.184
	1342214684		[NIII]	${}^{2}P_{_{3/2}}-{}^{2}P_{_{1/2}}$	57.343
			[OI]	${}^{3}P_{1} - {}^{3}P_{2}$	63.184
	1342214687		[OI]	${}^{3}P_{1} - {}^{3}P_{2}$	
	1342214682	Blue Red	[OI]	${}^{3}P_{1} - {}^{3}P_{2}$	
			¹² CO	J = 36 – 35	72.850
			[0111]	${}^{3}P_{0} - {}^{3}P_{1}$	88.356
			[OI]	${}^{3}P_{1} - {}^{3}P_{0}$	145.535
			[CII]	${}^{3}P_{_{1/2}}-{}^{3}P_{_{3/2}}$	157.741
			¹² CO	J = 16 - 15	162.820
Range spectr.				J = 15 - 14	173.630
				J = 14 - 13	186.010
				J = 13 - 12	200.270
	1342214685	Blue	[OI]	${}^{3}P_{1} - {}^{3}P_{2}$	63.184
			¹² CO	J = 36 – 35	72.850
			[OIII]	${}^{3}P_{0} - {}^{3}P_{1}$	88.356

Observed species II. (PACS)

Obs. type	Obsid.	Side	Molecules	Transition	λ [micron]
	1342214685	Red	[OI]	${}^{3}P_{1} - {}^{3}P_{0}$	145.535
			[CII]	${}^{3}P_{_{1/2}}-{}^{3}P_{_{3/2}}$	157.741
			¹² CO	J = 16 - 15	162.820
				J = 15 - 14	173.630
				J = 14 - 13	186.010
				J = 13 - 12	200.270
	1342214688	Blue	[OI]	J = 36 – 35	63.184
			¹² CO	${}^{3}P_{0} - {}^{3}P_{1}$	72.850
Range spectr.			[011]	${}^{3}P_{1} - {}^{3}P_{0}$	88.356
		Red	?	?	122.500
			[NII]	${}^{3}P_{2} - {}^{3}P_{1}$	121.898
			[OI]	${}^{3}P_{1} - {}^{3}P_{0}$	145.535
			[CII]	${}^{3}P_{_{1/2}}-{}^{3}P_{_{3/2}}$	157.741
			¹² CO	J = 16 - 15	162.820
				J = 15 - 14	173.630
				J = 14 - 13	186.010
				J = 13 - 12	200.270

•There is a cavity around the central cluster where the molecular hydrogen has been blown away farther into the clumps •The diffuse gas tracer CH is more widely distributed and extended to the south (relative to the OB cluster). CH also has a good correlation with [CI] (from Röllig et al. (2011)), hence we might see the formation path of carbon via CH + H ---> C + H₂

•The gas probably excited by radiative heating rather than by collisions in the deeper part of the clouds

•The dense gas tracers (CS and HCO⁺) are well correlated and the main source of HCO⁺ may be the reactions between CH and O, and CO and H_{3}^{+}

•The macro- and microscopic gas movements scenario could supported by CS, CCH

•We found correlations between few observed molecules...

•We used C¹⁸O data (from Nürnberger et al. (2002)) to calculate the hydrogen column density in MM1 and MM2

•Finish the analysis of the small amount of remaining data (mainly PACS)

·Continue to work on the HIFI map paper

·Do modeling of few species (e.g. 12CO, [CII])

•Possibly another paper about the rest data (point, cut, PACS observation, plus modeling part)

Chemical structure in NGC 3603

Thank you for your attention!

Markus Röllig