PDR Model Benchmark

M. Röllig

&

N. P. Abel, T. Bell, F. Bensch, J. Black, G. J. Ferland, B. Jonkheid, I. Kamp, M.J. Kaufman, J. Le Bourlot, F. Le Petit, R. Meijerink, O. Morata, V. Ossenkopf, E. Roueff, G. Shaw, M. Spaans, A. Sternberg, J. Stutzki, W.-F. Thi, E. F. van Dishoeck, P. A. M. van Hoof, S. Viti, M.G. Wolfire

PDR Model Benchmark

Astronomy & Astrophysics manuscript no. 5918 February 13, 2007

© ESO 2007

A PDR-Code Comparison Study

M. Röllig^{1,4}, N. P. Abel², T. Bell^{3,17}, F. Bensch¹, J. Black¹⁵, G. J. Ferland², B. Jonkheid⁵, I. Kamp⁶, M.J. Kaufman⁷, J. Le Bourlot⁸, F. Le Petit^{8,15}, R. Meijerink⁵, O. Morata¹⁶, V. Ossenkopf^{4,10}, E. Roueff⁸, G. Shaw², M. Spaans⁹, A. Sternberg¹¹, J. Stutzki⁴, W.-F. Thi¹², E. F. van Dishoeck⁵, P. A. M. van Hoof¹³, S. Viti³, M.G. Wolfire¹⁴

- ¹ Argelander-Institut f
 ür Astronomie *, Universit
 ät Bonn, Auf dem H
 ügel 71, D-53121 Bonn, Germany
- ² University of Kentucky, Department of Physics and Astronomy, Lexington, KY 40506, USA
- ³ Department of Physics & Astronomy, University College London, Gower Street, London WC1E 6BT
- ⁴ I. Physikalisches Institut, Universität zu Köln, Zülpicher Str. 77, D-50937 Köln, Germany
- ⁵ Leiden Observatory, P.O. Box 9513, NL-2300 RA Leiden, Netherlands
- ⁶ Space Telescope Science Division of ESA, Space Telescope Science Institute, Baltimore, MD 21218, USA
- ⁷ Department of Physics, San Jose State University, 1 Washington Square, San Jose, CA 95192, USA
- ⁸ LUTH UMR 8102, CNRS and Observatoire de Paris, Place J. Janssen 92195 Meudon Cedex, France
- ⁹ Kapteyn Astronomical Institute, PO Box 800, 9700 AV Groningen, The Netherlands
- ¹⁰ SRON National Institute for Space Research, Postbus 800, 9700 AV Groningen, The Netherlands
- ¹¹ School of Physics and Astronomy, Tel Aviv University, Ramat Aviv 69978, Israel
- ¹² Institute for Astronomy, The University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ, U.K.
- ¹³ Royal Observatory of Belgium, Av. Circul P
 ¹⁴ Astronomy Department, University of Maryla
 ¹⁵ C ege M
 ¹⁶ M
 ¹⁷ M
 ¹⁷ M
 ¹⁷ M
 ¹⁷ M
 ¹⁸ M
 ¹⁹ M
 ¹⁹ M
 ¹⁰ A21, USA SI ES - BRUSSEL
- ¹⁵ Onsala Space Observatory, 439 92 Onsala, 9
 - den
- ¹⁶ LAEFF, Villafranca del Castillo, Apdo. 50 ¹⁷ California Institute of Technology, 1200 E. California Blvd, Pasadena CA 91125, USA

Preprint online version: February 13, 2007

Participating Models

Model Name	Authors
Aikawa	HH. Lee, E. Herbst, G. Pineau des Forets, J. Le Bourlot, Y. Aikawa, N. Kuboi
Bensch	H. Störzer, B. Köster, M. Zilinsky, U. Leuenhagen, S. Jeyakumar, F. Bensch
CLOUDY	Gary J. Ferland, Peter van Hoof, Nick P. Abel, Gargi Shaw
COSTAR	I. Kamp, F. Bertoldi, GJ. van Zadelhoff
HTBKW	D. Hollenbach, A.G.G.M. Tielens, M.G. Burton, M.J. Kaufman, M.G. Wolfire
KOSMA	H. Störzer, B. Köster, M. Zilinsky, U. Leuenhagen, S. Jeyakumar, M. Röllig
Lee96mod	HH. Lee, E. Herbst, G. Pineau des Forets, E. Roueff, J. Le Bourlot, O. Morata
Leiden	J. Black, E. van Dishoeck, D. Jansen and B. Jonkheid
Meijerink	R. Meijerink, M. Spaans
Meudon	J. Le Bourlot, E. Roueff, F. Le Petit
Sternberg	A. Sternberg, A. Dalgarno
UCL_PDR	S. Viti, Wing-Fai Thi, Tom Bell

• standard chemistry:

- 31 species

H, H⁺, H₂, H₂⁺, H₃⁺, O, O⁺, OH⁺, OH, O₂, O₂⁺, H₂O, H₂O⁺, H₃O⁺, C, C⁺, CH, CH⁺, CH₂, CH₂⁺, CH₃, CH₃⁺, CH₄, CH₄⁺, CH₅⁺, CO, CO⁺, HCO⁺, He, He⁺, e⁻

- UMIST06 database
- elemental abundances:

He=0.1, C=1.0x10⁻⁴, O=3.0x10⁻⁴

- PAH's switched off
- standard radiation field
 - normalized to Draine field (1978)
 - cosmic-ray ionization:
 - visual extinction:
 - dust attenuation:

 ζ =5x10⁻¹⁷ s⁻¹ A_V=6.289 x 10⁻²² x N_{Htotal} τ_{UV}=3.02 x A_V

Requested output

For the species: H, H_2 , C⁺, C, CO, O, O₂, CH, OH, e⁻

- 1. local absolute volume densities (cm⁻³) vs. depth
- 2. column densities (cm⁻²) vs. depth
- 3. dissociation/ionization rates (s⁻¹) vs. depth for H₂, C, CO
- 4. local cooling/heating rates (erg s⁻¹ cm⁻³)
 fine structure lines of CII(158m), OI(63μ, 146μ), and CI(610μ, 370μ), and
 photoelectric grain heating
- 5. gas and dust temperature for models F5-F8

F1 completed by all 12 groupsF2-F4 complete by 10 groupsF5-F8 completed by 8 groups (some with numerical 'noise')

CLOUDY used different chemical network

KOSMA/Bensch used spherical geometry

results for Lee96mod are for t=10⁸ yrs

F1	F2
T=const	T=const
n=10 ³ cm ⁻³ , χ=10	n=10 ³ cm ⁻³ , χ=10 ⁵
F3	F4
T=const	T=const
n=10 ^{5.5} cm ⁻³ ,χ=10	n=10 ^{5.5} cm ⁻³ , χ=10 ⁵
F5	F 6
F5 T=variable	F6 T=variable
F5 T=variable n=10 ³ cm ⁻³ ,χ=10	F6 T=variable n=10 ³ cm ⁻³ , χ=10 ⁵
F5 T=variable n=10 ³ cm ⁻³ ,χ=10 F7	F6 T=variable n=10 ³ cm ⁻³ , χ=10 ⁵ F8
F5 T=variable n=10 ³ cm ⁻³ ,χ=10 F7 T=variable	F6 T=variable n=10 ³ cm ⁻³ , χ=10 ⁵ F8 T=variable

F1 completed by all 12 groupsF2-F4 complete by 10 groupsF5-F8 completed by 8 groups (some with numerical 'noise')

	F1	F2
	T=const	T=const
	n=10 ³ cm ⁻³ , χ=10	n=10 ³ cm ⁻³ , χ=10 ⁵
3	F3	F4
2	T=const	T=const
	n=10 ^{5.5} cm ⁻³ ,χ=10	n=10 ^{5.5} cm ⁻³ , χ=10 ⁵
	F5	F 6
	F5 T=variable	F6 T=variable
	F5 T=variable n=10 ³ cm ⁻³ ,χ=10	F6 T=variable n=10 ³ cm ⁻³ , χ=10 ⁵
	F5 T=variable n=10 ³ cm ⁻³ ,χ=10 F7	F6 T=variable n=10 ³ cm ⁻³ , χ=10 ⁵ F8
	F5 T=variable n=10 ³ cm ⁻³ ,χ=10 F7 T=variable	F6 T=variable n=10 ³ cm ⁻³ , χ=10 ⁵ F8 T=variable

F1 completed by all 12 groupsF2-F4 complete by 10 groupsF5-F8 completed by 8 groups (some with numerical 'noise')

DR Model Comparison

Comparable?

H₀: PDR models are all alike?

- Different model geometry complicates things
- When is a spherical cloud comparable to a plane-parallel slab? (semi-infinite, illuminated from both sides,...)

Comparable?

N: PDR models are all alike?

- Different model geometry complicates things
- When is a spherical cloud comparable to a plane-parallel slab? (semi-infinite, illuminated from both sides,...)
- Basic concepts such as A_V and column density change meaning in isotropically illuminated clouds

Comparable?

- FUV ≠ FUV
- Hardwired parts of the models can not simply be replaced → Self-consistency
- Time-dependence/steady-state
- Dust treatment
- Approximations vs. detailed treatment
- Radiative transfer, scattering, shielding
- H₂ physics/chemistry (H₂^{*}, formation)
- Rate coefficients
- Heating/cooling

a*

Baczynski et al. 2015

Goicoechea et al. 2007

Weingartner & Draine 2001, ApJ 548

Röllig et al. 2007

Comparable

- **Crippling**: all codes had to limit their capabilities in various areas to allow comparison
- Playground problems: Simple & reduced problem setup to minimize impact of hidden factors
- Analysis focused mainly on chemistry and shielding in the isothermal model setups.

Benchmark Data Archive

• All the results (data files, plots, documents) have been published on a website.

> 1E-17 1E-18 1E-19 1E-20

1E-5

1E-4

1E-3

	PDR	-Co	mpa	rise	on B	enc	hma	irk	
introduction					Data Fi	iles			
Codes		F1	F2	F3	F4	V1	V2	V3	V4
<u>Benchmark</u> Results	<u>Bensch</u>	<u>N, n,</u> <u>photo</u> h/c, <u>TB</u> , T	<u>N, n,</u> <u>photo</u> h/c, <u>TB</u> , T	<u>N, n,</u> <u>photo</u> h/c, <u>TB</u> , T	<u>N, n,</u> <u>photo</u> h/c, <u>TB</u> , T	<u>N, n,</u> <u>photo</u> <u>h/c, TB, T</u>	<u>N, n,</u> <u>photo</u> <u>h/c, TB, T</u>	<u>N, n,</u> <u>photo</u> <u>h/c, TB, T</u>	N, n, photo h/c, TB, T
PRE-Benchmark POST-Data POST-Plots	<u>Cloudy</u>	<u>N, n,</u> photo h/c, <u>TB</u> , T	<u>N, n,</u> photo <u>h/c, TB,</u> T	<u>N, n,</u> <u>photo</u> <u>h/c, TB,</u> T	<u>N, n,</u> photo h/c, <u>TB</u> , T	<u>N, n,</u> photo h/c, <u>TB, T</u>	<u>N, n,</u> <u>photo</u> <u>h/c, TB, T</u>	<u>N, n,</u> photo h/c, <u>TB, T</u>	<u>N, n,</u> photo h/c, TB, T
<u>Documents</u> Links	<u>COSTAR</u>	<u>N, n,</u> <u>photo</u> <u>h/c,</u> TB, <u>T</u>	<u>N, n,</u> <u>photo</u> <u>h/c,</u> TB, <u>T</u>	<u>N, n,</u> <u>photo</u> <u>h/c, TB, T</u>	<u>N, n,</u> <u>photo</u> <u>h/c, TB, T</u>	<u>N, n,</u> <u>photo</u> <u>h/c, TB, T</u>	<u>N, n,</u> <u>photo</u> <u>h/c, TB, T</u>	<u>N, n,</u> <u>photo</u> <u>h/c, TB, T</u>	<u>N, n,</u> <u>photo</u> <u>h/c</u> , TB, <u>T</u>
	<u>HTBKW</u>	<u>N, n,</u> <u>photo</u> <u>h/c, TB,</u> T	<u>N, n,</u> <u>photo</u> <u>h/c, TB,</u> T	<u>N, n,</u> <u>photo</u> <u>h/c, TB</u> , T	<u>N, n,</u> <u>photo</u> <u>h/c, TB</u> , T	<u>N, n,</u> <u>photo</u> <u>h/c, TB, T</u>	<u>N, n,</u> <u>photo</u> <u>h/c, TB, T</u>	<u>N, n,</u> <u>photo</u> <u>h/c, TB, T</u>	N, n, photo h/c, TB, T
	KOSMA-tau	<u>N, n,</u> <u>photo</u> <u>h/c, TB, T</u>	<u>N, n,</u> <u>photo</u> <u>h/c, TB, T</u>	<u>N, n,</u> <u>photo</u> <u>h/c, TB, T</u>	<u>N, n,</u> photo h/c, <u>TB, T</u>	<u>N, n,</u> <u>photo</u> <u>h/c, TB, T</u>	<u>N, n,</u> <u>photo</u> <u>h/c, TB, T</u>	<u>N, n,</u> <u>photo</u> <u>h/c, TB, T</u>	<u>N, n,</u> photo <u>h/c, TB, T</u>
	<u>Leiden</u>	<u>N, n,</u> <u>photo</u> <u>h/c, TB, T</u>	<u>N, n,</u> <u>photo</u> <u>h/c, TB, T</u>	<u>N, n,</u> <u>photo</u> <u>h/c, TB, T</u>	<u>N, n,</u> <u>photo</u> <u>h/c, TB, T</u>	<u>N, n,</u> <u>photo</u> <u>h/c, TB, T</u>	<u>N, n,</u> <u>photo</u> <u>h/c, TB, T</u>	<u>N, n,</u> <u>photo</u> <u>h/c, TB, T</u>	N, n, photo h/c, TB, T
	Lee96mod	<u>N, n,</u> <u>photo</u> h/c, TB, T	<u>N, n,</u> photo h/c, TB, T	<u>N, n,</u> photo h/c, TB, T	N, n, photo h/c, TB, T	N, n, photo h/c, TB, T	N, n, photo h/c, TB, T	N, n, photo h/c, TB, T	N, n, photo h/c, TB, T
		<u>N, n,</u>	<u>N, n,</u>	<u>N, n</u> ,	<u>N, n</u> ,	<u>N, n</u> ,	<u>N, n</u> ,	<u>N, n</u> ,	<u>N, n</u> ,

http://www.astro.uni-koeln.de/pdr-comparison/

10

AFTER

0.01 A

0.1

Benchmark Data Archive

- All the results (data files, plots, documents) have been published on a website.
- Surprising archive traffic (2009-15)

300/month

http://www.astro.uni-koeln.de/pdr-comparison/

Benchmark Data Archive

- All the results (data files, plots, documents) have been published on a website.
- Surprising archive traffic (2009-15)
- Modelers use the benchmark data to benchmark their new models against.

Mission accomplished!

http://www.astro.uni-koeln.de/pdr-comparison/

New kids on the block

Protoplanetary Disk Model

Woitke, Kamp & Thi, A&A 501, 383-406 (2009)

- Based on COSTAR (Kamp, Bertoldi, van Zadelhoff)
- 1+1 D model: physical, thermal and chemical structure of protoplanetary disks.
- 2D dust continuum radiative transfer,
- Gas-phase and photo-chemistry, ice formation/evaporation
- X-ray-driven chemistry and heating via H₂ ionization
- hydrostatic disk structure in axial symmetry

DALI

Bruderer, van Dishoeck, Doty, Herczeg, A&A 541, A91 (2012)

- Flexible geometry, pp-disks, envelopes
- Steady state & t-dependent chemistry
- gas-phase & simple surface hydrogenation
- X-ray induced chemistry
- PAH chemistry & H₂*
- Photodissociation using shielding rates
- MC continuum RT
- 'escape formalism' for molecular excitation
- ray tracing for emission

3D-PDR Bisbas et al. MNRAS, 427, 2100 (2012)

- 3D-PDR code (arbitrary geometry)
- HEALPIX-based ray tracing
- Further development of UCL_PDR
- Cooling by C⁺,C,O,CO
- 2-lev approximation of H₂
- Small (33 spec.) , time dependent chemistry
- CO and H₂ PD using shielding rates

AccretioN disk with Dust Evolution & Sedimentation

Akimkin et al., ApJ 766:8 (24pp), (2013)

- Hydrostatic, quasi-static disk
- 1+1D freq.-dependent continuum RT
- dust growth (coagulation & fragmentation) and sedimentation
- chemical evolution using an extended gas-grain network with UV/X-raydriven processes surface reactions
- Explicit PD rate computation
- gas thermal energy balance

Embedded protostar with outflow cavity PDR

Lee et al. , ApJSS, 213:33 (23pp), 2014

- Custom coordinates based on circular paraboloid
- dust continuum radiative code RADMC-3D $\rightarrow T_d$
- grid-based Monte Carlo RT -> FUV
- RATRAN upgrade: RIG
- Gas+dust chemistry (ALCHEMIC derivate)
- H₂ formation (C&T 2002-10)

PyPDR

Bruderer 2014: http://www.mpe.mpg.de/~simonbr/research_pypdr/index.html

- tiny/minimal PDR code written in Python
- Plane-parallel slab (semi-infinite)
- basic chemistry with about 30 molecules, time dependent
- NLTE excitation of [OI], [CII], [CI], CO, and ¹³CO using an escape probability approach
- Major heating & cooling processes implemented

KOSMA-τ 3D

Andree-Labsch et al. , A&A, 2015, submitted

- 3D PDR with arbitrary geometry & velocity structure
- Post-processing of KOSMA clumpy PDR ensembles
- Voxel filled with fractal cloud ensembles
- Stochastic shielding and attenuation
- Ray tracing RT for FUV attenuation and line emission

See S. Andree-Labsch's talk

Fervent

Baczynski, Glover, and Klessen., MNRAS, 2015, submitted

- RT module for the MHD adaptive mesh refinement code FLASH 4.
- Self-consistent, time dependent evolution of energetics, chemistry and density of the ISM
- No scattering or continuum yet
- Only H ionization
- Very small chemistry (NL97 chemical network) H-H₂ transition well reproduced

Benchmark codes keep updating

Cloudy

- Upgrade of atomic & molecular structure
- Enhanced Chemistry (s.s. & t-dep., freeze-out)
- Grain physics/chemistry
- pyCloudy, Cloudy_3D

ΚΟΣΜΑ-τ

- Clumpy PDR ensembles
- Dust upgrade & new cont. RT
- New H₂ formation (C&T 2002-10)
- Upgraded chemistry (UDfA12 + isotop., surface chemistry, s2s chemistry)
- Shielding, PD rate scaling, heating,...
- KOSMA-τ 3D

Meijerink

- XDR
- Mechanical heating
- Chemistry

HTBKW

- H₂ treatment (link to Meudon) (Kaufman et al. 2006)
- Merging with HII region (Stardust99)
- Chemistry upgrade (t-dep., surface chem.)
- Dust upgrade (PAHs, VSG,...)
- Coupling to shock-code

Meudon

- RT upgrade (FUV & line)
- Grain upgrade (composition, growth)
- Stochastic grain chemistry
- H₂ formation (LH & ER processes)
- Stochastic grain heating
- Chemistry upgrade (s2s chemistry,...)

Apologies for all modelling/upgrade efforts not mentioned here!

Meudon

http://pdr.obspm.fr/PDRcode.html

- Code freely available
- PDR Database access (online & download)
- VO integration

HTBKW

http://dustem.astro.umd.edu/pdrt/index.html

- Browse contour plots from PDR models •
- Access desired model plot ٠
- Use Line Ratio Fitting program ٠
- IDL & Python scripting interface for ٠ PDR Line Ratio Fit

rs of photodissociation regions (PDRs) from your observations. With PDRT you can

ΚΟΣΜΑ-τ

http://hera.ph1.uni-koeln.de/~pdr/

- Browse contour plots from PDR models (interface upgrade to access all results is coming)
- Isotopic fractionation material <u>http://www.astro.uni-koeln.de/kosma-tau-</u> <u>downloads</u>
- Mathematica script to insert Isotopes into UDfA
- UDfA06 chemistry file including ¹³C and ¹⁸O
- plots

Cloudy

http://www.nublado.org/

- Code freely availably
- User discussion board available •

Search

ProDiMo

http://homepage.univie.ac.at/peter.woitke/ProDiMo.html

- Code availably after registration
- Wiki page access for registered users

ProDiMo is a scientific software package in FORTRAN 90 to model protoplanetary disks including gas phase, X-ray and UV-photo-chemistry, gas heating and cooling balance, disk structure and (dust & line) radiative transfer. The following is a preview of the wiki pages for ProDiMo hosted at forge-roe.ac.uki Torgetsegistrinion.html for a new ProDMo user account, mentioning my name.

Disclaimer

This code is available on a collaborative basis, meaning

- You are not permitted to pass (parts of) the code to anyone else. If another person is interested to join, please tell him/her to follow the same procedure as you have done, namely to apply at https://forge.roe.ac.uk/ForgeRegistration.html for a new ProDiMo user account.
- You have to give all developers of ProDiMo, currently Peter Woitke AND Inga Kamp AND Wing-Fai Thi co-author right, i.e. you should ask us prior to paper submission whether we want to be included as co-authors. If you want to use the X-ray module, you should also give Giambattista Aresu co-autor right.
- If you contribute significant changes to ProDiMo, you get co-author right on all papers that use these changes.
- In order to claim his/her co-author right on a paper going to be submitted, he/she needs to send his/her scientific comments on the paper on timescales of one or two weeks. Otherwise he/she looses that right for this paper.

Remember that, as you can read this wiki page, you have signed up for these conditions.

Welcome to the ProDiMo manual pages

See how to Get_Started here (Code download and compilation - Note the top of page!).

See how to Run_ProDiMo here

Find some more useful Tips_and_Tricks how to run complex disk models and set parameters here

See how to calculate gas emission lines with <u>RATRAN</u> here

Check out Known_Problems with some solutions.

Description of Atomic_and_molecular_data and Dust_opacities

Current Work_In_Progress and RefereedPapers using ProDiMo

Program_structure

UCL PDR

https://www.ucl.ac.uk/star/research/stars galaxies/codes/uclpdr

The code is available on request ٠

Meijerink XDR

http://home.strw.leidenuniv.nl/~meijerin k/grid/

A grid of PDR and XDR models

ш

by:

Purpose

102-10

103-104

104-106.5

 $10^{2} - 10^{3}$

10³-10⁴

104-106.5

The XDR grid comprises the following ranges Range Density (cm⁻³) Radiation field (erg s⁻¹ cm⁻²) Cloudsize (pc)

50

10

1

0.016-1.6

0.16-16

1.6-160

Grid

Model access

• The conclusion from Benchmark paper still valid:

".. observers should not take the PDR results too literally to constrain [...] physical parameters like density and radiation field in the region they observe."

- Influence of PDR model input parameters on results difficult to predict number of crucial model parameters growing
- Fitting model computations to observations requires experience.
- Detailed PDR modelling remains difficult for non-experts
- Easier to collaborate with modeler than to quickly run some PDR models yourself.
- But, ...

Model access

- Simple analysis based on published contour plots/data became much easier thanks to the many 'public' outreach efforts.
- Toy models, such as PyPDR span a bridge between simple analytic calculations and full complexity models.

Model access

- Simple analysis based on published contour plots/data became much easier thanks to the many 'public' outreach efforts.
- Toy models, such as PyPDR span a bridge between simple analytic calculations and full complexity models.
- If you really want to run models yourself, you have now a number models to choose! Good user-support.

So much left to do:

• 2007 benchmark left many open issues

n=10^{5.5} cm⁻³, χ=10⁵

So much left to do:

- 2007 benchmark left many open issues
- Discuss numerics
- New physics/chemistry
- Follow up on CO excitation and C+ workshops
- Benchmark against real world problems
- Exchange of experience, include the new models
- PDR modelling roadmap

Status after the benchmark 2007

n=10^{5.5} cm⁻³, χ=10

So much left to do:

- 2007 benchmark left many open issues
- Discuss numerics

n=10^{5.5} cm⁻³, χ=10

So much left to do:

- 2007 benchmark left many open issues
- Discuss numerics
- New physics/chemistry

So much left to do:

- 2007 benchmark left many open issues
- Discuss numerics
- New physics/chemistry
- Follow up on CO excitation and C+ workshops

So much left to do:

- 2007 benchmark left many open issues
- Discuss numerics
- New physics/chemistry
- Follow up on CO excitation and C+ workshops
- Benchmark against real world problems
- Exchange of experience, include the new models
- PDR modelling roadmap

Thank you for the invitation!

Thank you for your attention!

