HEXOS – Orion Bar

KOSMA-τ Modeling M. Röllig

Modeling: KOSMA-τ PDR Code

n[r] =

 $n\left(\frac{r}{R}\right)$

n R-a

RRears Sr SF

True

- spherical geometry
- isotropic illumination
- modular chemistry incl. isotopologues

 $u[r]_{s}^{10}$

Density Profile

- coupled with radiative transfer code (ONION, SimLine, etc.)
- self-consistently solves chemistry & energy balance

Modeling: KOSMA-τ PDR Code

Output:

- density profile of all contained species
- temperature profile (gas, dust)
- excitation conditions (T_{ex}, etc.)
- clump-averaged quantities
 - column densities
 - -AV
 - optical depths
 - intensities

The KOSMA-τ Code

The KOSMA-τ Code

Recent updates

- Updated PE heating (Weingartner & Draine 2001)
- Improved dust handling (various compositions, ..)
- Clumpy media (post-computational superposition)
- Improved model fitting tools
- Upgrade to UDfA0x
- Incorporation of isotopomers into UDfA0x (automated)

Clumpy Media

single clumps with Gaussian emission pattern

superposition of 200 Gaussian clumps

Clumpy Clouds via Superposition of Individual Clouds

dN/dM~M^{-1.8}

M/M _☉	Ν
100	2
10	13
1	80
0.1	502
0.01	3170

 M_{tot} =673 M_{\odot}

Clumpy Media

 random realisation of an ensemble with M_{tot}=10⁴M_☉ (subdivided into 4 condensations)

Pillars in Rosette (HOBYS team: Motte et al. 2010) random distribution

observed with a 45" beam

Effects of Clumpiness

- A single model cloud has very different properties compared to a clumpy cloud ensemble of the same mass.
 - very many small clumps, few large clumps
 - much more surface:
 - larger volume fraction is reached by FUV
 - more hot gas compared to monolithic cloud
 - e.g. stronger emission of high J CO lines

CO Emissions from Clumps

High-J CO lines can be excited due to clumpiness

Orion Bar Modeling Workshop 17.-18. Feb. 2011 Paris

UMIST/UDfA - Isotopomers

Upgrade from UMIST95/99 to UDfA0x

 reactions are now provided with multiple sets of reaction rates (valid for different temperature ranges). For example:

UMIST/UDfA - Isotopomers

- Insert a single ¹³C and/or ¹⁸O into the UDfA reeactions
- Automatic introduction of isotopes into chemical compounds is not easy. Simple permutation may lead to undesired reactions

	սուս բ		itation	
СНЗ	CN [.]	>	CH3CN	е.
СНЗ	13CN [.]	>	CH3 <mark>13C</mark> N	e.
СНЗ	13CN [.]	>	13CH3CN	е.
13CH3	CN [.]	>	CH3 <mark>13C</mark> N	e [.]
<mark>13С</mark> НЗ	CN [.]	>	13CH3CN	e.

blind normutation

,cleverer' permutation

СНЗ	CN [.]	>	CH3CN	e [:]
СНЗ	13CN ⁻	>	CH3 <mark>13C</mark> N	e [.]
13CH3	CN [.]	>	13CH3CN	e [.]

functional group binding needs to be kept

UMIST/UDfA - Isotopomers

Complexity is large. Blind permutation of UDfA06 leads to ~50000 reactions! Automatic house-keeping necessary.

СНЗСОСНЗ	e.	•••>	CO	CH3	CH3
СНЗСО <mark>13С</mark> НЗ ⁺	e.	· · >	СО	СНЗ	<mark>13С</mark> НЗ
СН3СО <mark>13С</mark> Н3 [;]	e [.]	· · >	СО	<mark>13С</mark> НЗ	СНЗ
СНЗСО <mark>13С</mark> НЗ [;]	e [.]	· ·)	13C0	СНЗ	СНЗ
CH3C18OCH3 ⁺	e [.]	>	C180	CH3	СНЗ
СНЗС180 <mark>13С</mark> НЗ ⁺	e [.]	· ·)	C180	СНЗ	<mark>13С</mark> НЗ
СНЗС180 <mark>13С</mark> НЗ ⁺	e [.]	>	C180	<mark>13</mark> CH3	СНЗ
СНЗС180 <mark>13С</mark> НЗ ⁺	e.	>	13C180	CH3	СНЗ
СНЗ <mark>13С</mark> ОСНЗ ⁺	e [.]	>	СО	CH3	13CH3
СНЗ <mark>13С</mark> ОСНЗ ⁺	e.	>	СО	13CH3	СНЗ
СНЗ <mark>13С</mark> ОСНЗ ⁺	e [.]	>	13C0	CH3	СНЗ
СН3 <mark>13С</mark> 18ОСН3 ⁺	e.	>	C180	CH3	13CH3
СН3 <mark>13С</mark> 18ОСНЗ ⁺	e [.]	· ·)	C180	<mark>13С</mark> НЗ	СНЗ
СН3 <mark>13С</mark> 18ОСНЗ ⁺	e [.]	>	13C180	CH3	СНЗ
<mark>13С</mark> НЗСОСНЗ ⁺	e [.]	>	СО	CH3	13CH3
<mark>13С</mark> НЗСОСНЗ ⁺	e.	· · >	СО	<mark>13</mark> СНЗ	СНЗ
<mark>13С</mark> НЗСОСНЗ ⁺	e [.]	>	13C0	CH3	СНЗ
<mark>13С</mark> НЗС18ОСНЗ ⁺	e [.]	•••)	C180	CH3	<mark>13С</mark> НЗ
<mark>13С</mark> НЗС18ОСНЗ ⁺	e [.]	•••)	C180	13C H3	СНЗ
<mark>13С</mark> Н3С18ОСН3 ⁺	e [.]	>	13C180	CH3	СНЗ

СНЗСОСНЗ ⁺	e [.]	>	CO	CH3	СНЗ
СНЗСО <mark>13С</mark> НЗ ⁺	e [.]	>	CO	13CH3	СНЗ
CH3C18OCH3 ⁺	e [.]	>	C180	СНЗ	СНЗ
СНЗС180 <mark>13С</mark> НЗ ⁺	e.	>	C180	13CH3	СНЗ
СНЗ <mark>13С</mark> ОСНЗ ⁺	e.	>	13C0	СНЗ	СНЗ
СНЗ <mark>13С</mark> 18ОСНЗ ⁺	e [.]	· · >	13C180	СНЗ	СНЗ
<mark>13С</mark> НЗСОСНЗ ⁺	e [.]	· · >	CO	13CH3	СНЗ
<mark>13С</mark> НЗС180СНЗ ⁺	e [.]	>	C180	13CH3	СНЗ

13C Fractionation

13C Fractionation

13C Fractionation

Work in progress

- dust continuum emission
- dust temperature calculation
- surface chemistry
- variations of the density structure
- geometrical modeling

Quick literature data look-up (all in K km/sec)

• ¹²CO

- 1-0: 190±130 (Tauber 1994), 60±25 (Omodaka
- 2-1: 280±120 (White & Sandell 1995)
- 3-2: 240±90 (Hogerheijde (1995)
- 4-3: 400±150 (Wilson 2001), 125±60 (White & Sandell (1995))
- 5-4: 360±40 (Wirström, 2006)
- 6-5: 415±100 (Lis 1997)
- 7-6: 470±120 (Wilson 2001)
- 9-8: 265±90 (Marrone 2004)
- 14-13: 117±30 (Sempere 2000), 73±25 (Stacey 1993)

sometimes data from different authors appears to be inconsistent → needs checking

• ¹³CO

•

- 1-0: 95±30 (Tauber 1994), 36±15 (Ikeda 2002), 15±8 (Omodaka (1994)
- 2-1: 91±25 (White & Sandell 1995), 73±30 (Keene (1996)
- 3-2: 150±100 (van der Wiel 2009)
- 5-4: 90±10 (Wirström 2006)
- 6-5: 111±80 (Lis 1997)
- [CI] (1-0): 53±30 (White & Sandell 1995, and Keene 1996), 30±10 (Ikeda 2002), 21±8 (Hogerheijde 1995 and Tauber 1995)
- [CII] 158μ: 470±250 (Herrmann 1997), 330±110 (Mookerjea 2003)
- [OI] 63µ: 410±100 (Herrmann 1997)
 - [OI] 145µ: 335±100 (Herrmann 1997)

Orion Bar Modeling Workshop 17.-18. Feb.

2011 Paris

Orion Bar Data

Complementary observations show a large spread in intensities, e.g. ¹³CO J=1-0

Model Remarks

- Large uncertainties in applied Herschel data values (calibration)
- Complementary data was only quickly picked up from the literature and shows large spread in the actual values → careful review needed
- So far we only used the SPIRE & PACS data to achieve a first fit. The complementary data points are just plotted to allow a first assessment of the fit.
- We always fit absolute intensities/fluxes, we don't fit line ratios.
- Assumption:

 $T_{mb}(C^{18}O)^{model} = 1/8 T_{mb}(^{13}CO)^{model}$

Single Component non-Clumpy Model

high-J ¹²CO lines well fitted, ¹³CO not well reproduced Finestructure lines met relatively well

but very large χ neccessary.

FUV Differences

Single component summary

- To reproduce the very high J transitions a simple model requires very strong FUV illumination, which is inconsistent with the local conditions.
- The model mass is very large.
- [OI] lines are always a problem in the PDR fits, and will be ignored for the moment.

2-Comp. Clumpy Model Approach

- We assume a stratification of 2 clumpy layers
- deeper layer see a weaker FUV field due to attenuation

yellow: closer to the FUV source -

beige: further away from the FUV source

2-Component, Clumpy Model

¹²CO lines well fitted. ¹³CO not too bad.
 Finestructure lines met relatively well.
 observed mean col. density of 6.5e22 cm⁻² and a (9.6")² pixel implies a mass of 0.2 M_O
 Orion Bar Modeling Workshop 17.-18. Feb.
 2011 Paris

Component Summary

	component 1	component 2
mean density	1e6 cm ⁻³	1e6 cm ⁻³
total mass , {min,max clump mass}	0.4 M _☉ {0.001 M _☉ , <mark>10 M_☉</mark> }	0.1 M _☉ {0. 1 M _☉ , <mark>10 M_☉</mark> }
FUV (Draine)	5.7e5	3.3e4
area filling ⁽¹⁾	1.9	0.3
volume filling ⁽²⁾	0.056	0.014

We assume a clump mass power index of 1.8, and a mass size power index of 2.3. **Problems:**

max. clump masses of both components are too large compared to the total mass -> requires updated model grid
FUV still too large

⁽¹⁾ ensemble solid angle/(solid angle of $(9.6" \times 9.6" \times 0.6 \text{ pc})$ box) ⁽²⁾ ensemble volume/(box volume of 9.6" side length in 415 pc distance)

Across the bar

PhD thesis in progress:

Modeling the intensity profile across the bar:

•assuming n layers of clumpy PDRs
•FUV is attenuated for subsequent layers

•E.g.: upper clump mass and mean clump density are fitted
•convolved with Gaussian beam

Across the bar

Across the bar

Summary

- The 2-phase clumpy model is able to perform a not too bad first fit to the Orion Bar data.
- A careful review of ALL available data is neccessary.
- Followed by a tuning/modification of the applied model atte.mpts to refine the analysis